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This booklet is designed as a ‘refresher’ to you as to why we do statistics; it provides the background to this 
question and introduces some of the statistical tests that you might use in your TBA projects. It does not tell you 
which test is right for your analysis, or what assumptions should be met before the test is valid. This information 
is provided elsewhere e.g. in the some of the books to be found in the TBA travelling library and you will need to 
refer to these before analysing data. Most of the tests covered can be used in the Minitab software package that 
is installed on all TBA laptops and this guide complements the ‘Simple guide to Minitab’ that will also be made 
available on your TBA course. 

How you use this manual is up to you. You may wish to try some hand worked examples as you work your way 
through the book or plug some examples into the computer as you go. Or you may prefer to use the Guide as a 
reference manual, looking up specifi c tests as you need them. In either case, we hope you fi nd this Guide takes 
some of the fear out of statistics: computer analysis is a tool like any other, and will take a lot of the hard work 
out of statistics once you feel you are in charge!
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INTRODUCTION

1.1  WHY STATISTICS ARE NECESSARY: 

They allow degree of objectivity to be incorporated into assertions.

If statements arising from a study are to be regarded as other than ‘just-so stories’, they must be backed up by 
statistical data that suggest that patterns found were not likely to be simply chance events.

1) You will nearly always get some ‘effect’ by chance

2) Statistical tests allow us to answer the question:
How likely is it that I could have got this result (effect) by chance?
‘How likely is it?’ = ‘What is the probability?’
Statistical tests allow you to calculate this probability: p

3) If that probability is suffi ciently small, then we conclude that the effect is not due to chance and that it’s a 
real effect
- that the effect is ‘statistically signifi cant’
‘Suffi ciently small’:     p  < 0.05
 < 5%
 < 1 in 20

1.2  WHAT DOES SIGNIFICANCE MEAN?

Often misunderstood!

If the null hypothesis is true, then p = the probability of obtaining the data you actually have.

If this probability is less than 0.05 (p < 0.05), then we don’t believe the null hypothesis can be true, 
and we reject it.
If p > 0.05, and we cannot reject the null hypothesis, this does not mean we accept the null hypothesis 
as true !  We merely have failed to reject it.
0.05 is an arbitrary level, but is conventional; two further levels, 0.01 (1 in 100), and 0.001 (1 in 
1000).
p is NOT the probability of the null hypothesis being true.

It is also important to be aware that:
- with a given size effect, statistical signifi cance increases – p decreases – with increasing sample size

- with a given sample size, statistical signifi cance increases – p decreases –  with increasing ‘effect size’
For example, when tossing a coin and calculating the probability of it landing on ‘heads’: -

 60% Heads 80% Heads 100% Heads

10 throws p = 0.75 p = 0.057 p = 0.027
100 throws p = 0.045
1000 throws p = 0.001

Hence, statistics provide us with an objective way of assessing whether an effect is real, or whether it might 
just be due to chance; but do not waste time and effort collecting data until p < 0.000000001!

•

•

•

•
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1.3  SOME TERMS AND CONCEPTS

Data (singular ‘datum’) - numbers generated in an experiment/study. Data originate from observations 
- the measurements, or counts contributed to by each unit in the sample.

1.3.1  Levels of measurement of data

Discontinuous variables/data - usually whole integers, mostly counts, or frequencies of things.
Continuous data - values along a scale, usually measurements (e.g. height, mass, temperature, etc.).

4 levels of measurement:

1. Nominal/categorical scale.
Each observation falls into one of two or more categories e.g. if looking at sex ratio of a species, each 
individual classifi ed as male, or female. Each individual does not have order of magnitude associated 
with it.

2. Ordinal scale.
Each observation provides a score, and observations within sample can be ranked from low to high. 
However, the ordinal numbers do not indicate absolute quantities - intervals between numbers on the 
scale not necessarily equal. For example, plant species can be ranked on the ‘DAFOR’ scale, whereby 
they are classifi ed as dominant, abundant, frequent, occasional or rare. No expectation that dominant 
organism is, say, 2x more common than abundant species.

3. Interval scale.
Data can be ranked, but now distances between two adjacent points on scale will be the same. Dates 
and temperature (oC) are on interval scale - there is validity to subtracting one point on the scale 
from another, to get a measure of the amount of time that has passed, or the change in temperature. 
However, it is not valid to talk in terms of one point along the scale being 2x, or 3x, more than another 
- because no absolute 0 in the scales (i.e. May 3rd cannot be expressed as being a certain number of 
times larger, or later, or whatever, than April 26th!).

4. Ratio scale.
Does have absolute zero.  Th ere is meaning to saying that an observation is x times larger, longer, 
heavier, faster, etc. than another.

As far as statistical test selection goes, interval and ratio scales effectively lead to the same type of test (see 
below).

1.3.2  Other terms

Variable - used as noun. A characteristic that diff ers between individuals e.g. size, shape, diet, any 
biotic or abiotic factor, including behaviour. 

In a study, variables are measured, or controlled for. In an experiment, the experimenter usually manipulates 
one, or more, variables to see eff ect on another.

The variable manipulated, or controlled, is the independent variable. It is also known as the predictor vari-
able i.e. the hypothesized (predicted) effects infl uencing the dependent variable.

Effect is measured on a dependent variable (a study tests whether the scores for latter are dependent on scores 
of former). The dependent variable is also described as the response variable; it is what the prediction relates 
to and the variable that changes in response to the hypothesized effects.

e.g. looking for a relationship between group size of red colobus monkeys and home range in Kibale Forest, 
Uganda:

- group size is  independent variable
- home range is the dependent variable.

•

•
•

•
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In a different study, a connection might be sought between forest type and size of red colobus groups - now 
group size becomes the dependent variable.

Sample - a subset of the population that contributes to the analysis in the study; - an assumption is 
that the sample is representative of that population.

  
Sampling, of course, must be done in a random fashion, so that no bias occurs in the data. When you want to 
generalise, you should take care to randomise treatments and/or samples properly (i.e. all have an equal chance 
of being selected). The example below illustrates the types of sampling bias that might occur in a study of bird 
behaviour in Kirindy Forest, Madagascar.

Random sampling:

Souimanga sunbird Chadzia Hildegardia

Does the diurnal pattern of foraging by Souimanga sunbirds differ between Chadzia
and Hildegardia?

Possible sampling biases:
- Places where data collected
- Person collecting the data vs time of day, day of project or plant species
- Time of day or tree species vs day of project

Independence of observations in a sample is often assumed in statistical procedures. Each measurement 
should be independent of all others, or if not, the non-independence must be specifi ed and accounted 
for in the design of the study and the analysis.

i.e. the value of different observations should not be inherently linked to one another; without due care, non-
independence is especially likely where groups, broods, or litters, of animals are being studied.

Replication is required in virtually every type of study and is essential to avoid the problem of 
non-independence of data. The examples below and overleaf illustrate the nature of the potential 
problem.

Question: Do male millipedes have longer legs than female millipedes?

Female Male

Could we measure just one leg from each millipede?

No, we need to replicate the measurements

•

•

•

Figure 1
Potential sampling 

biases in a fi eld study.

Figure 2a
How do we ensure 

replication?
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To avoid the problem of pseudoreplication in this example, measure legs from 30 individual female and male 
millipedes.

Psuedoreplication demonstrates instances where ‘treatments are not replicated or replicates are not 
statistically independent’.

Observer bias must also be avoided - conscious or subconscious selection, or rejection, of data, for 
example, that help to validate an earlier prediction.

•

•

Question: Do male millipedes have longer legs than female millipedes?

Female Male

So could we measure 30 legs from each millipede?

No, these measurements would not be independent – ‘pseudoreplication’

Any factor that differs between the two millipedes, might have caused the difference 
– e.g. sex, but also growth conditions, species, etc etc

Figure 2b
How do we avoid 
pseudoreplication?.

Figure 3
Project design to avoid 
pseudoreplication.

 

10 samples 

10 samples 

Pseudoreplication 

Pseudoreplication 

Replication 
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Two broad categories of statistics:

descriptive (or summary) stats - used to organise, summarise and describe measures of sample.
inferential (deductive, or analytical) stats - to infer, or predict, population parameters (i.e. to make 
statements, using probability, about general patterns, based around the sample measures).

2.1  DESCRIPTIVE STATISTICS

Includes measures of average, and variance around them (which give an idea of the spread of data). Averages 
are measured using mean, median or mode and are measures of central tendency of data - a single measure, 
close to centre of distribution of observations, representative of the whole.

Mean

Use population mean, μ = (Σx)/N

or (usual case), an approximation to this, 
n

x
x ∑=  

(NB. x   = ‘x-bar’).
N = number of items/observations in population
n= number of items/observations in sample
x = each observation.

The mean is strongly affected by extreme results i.e. one very large value can make the mean higher than all 
other values in a sample; in this case, the mean would not be a very representative average score.  

In such cases, it is better to use:

Median

The ‘middle value’, when observations listed in rank order. As it is an ordinal statistic, not all values need to 
be known – e.g. enough to know that absent values are above certain number (the median life span of 10 pet 
rabbits can be calculated even if 3 are still alive). Medians can be worked out when data fall into classes.  

Mode

In a frequency distribution the mode is the class containing most values.
A frequency distribution may be bimodal, or multimodal. In such cases, usually necessary to carry out separate 
analyses on the discrete population categories within which the data are symmetrical. Mode is most often used 
as a quick and easy approximate measure of central tendency.

2.1.1  Measuring variability

Populations vary in characteristics, hence the need for statistics - if there was no variation, one value alone 
would tell us all about that character for all individuals. Giving a measure of the average is not enough - we 
also need to know something about the variability within samples. Such measures include range, standard 
deviation and variance.

•
•

•

•

•

STATISTICS
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Range (max – min)

Takes account of two most extreme observations - it is a subtraction of lower from higher.

IQR

A quartile is any one of the  3 values that divide a data set into 4 equal parts; each part representing 1/4th of 
the sorted sample population. The inter quartile range is a measure of statistical dispersion, and is equal to the 
difference between the third and fi rst quartiles. As 25% of the data are less than or equal to the fi rst quartile 
and the same proportion are greater than or equal to the third quartile, the IQR will include about half of the 
data. The IQR has the same units as the data and because it uses the middle 50%, is not affected by outliers or 
extreme values. The IQR is also equal to the length of the box in a box plot.

Standard deviation 

Most widely used measure of variability. 

1
)( 2

−

−
= ∑

n
xx

s  Can also be denoted by σ. 

If working by hand, use:

2
2

1
x

n
x

s −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
= ∑

(n-1) as denominator, not just n, for small samples (<30). Has effect of increasing the standard deviation, ‘s’. 
Described as being like a tax - we are only able to use sample mean and not true mean, so cannot be sure of 
our data set: hence standard deviation with (n-1) degrees of freedom. As general rule, (n-1) calculator button 
should always be used in calculations.

Variance 

Is the square of the standard deviation, and is important in various statistical calculations.

2.1.2  Th e confi dence in our estimates

Intuitively, larger samples should give better estimate of population mean than smaller samples. Some samples 
will give larger mean estimate and smaller standard deviation, just by chance. The array of sample means are 
thus expected to form a normal distribution around the ‘true’ mean:

standard deviation of sample means = standard error of mean.

From properties of normal distribution:

68% of large number of sample means fall within ± 1 S.E. of the population mean (μ).

Similarly, the population mean (which we are trying to approximate), has a 68% likelihood of falling 
within ± 1 S.E. of the sample mean, x .

S.E. can be calculated from 
n
s

 where n = # of observations.

(Note: as n gets larger, S.E. gets smaller - i.e. with larger sample size, we become more confi dent of mean 
estimate).

•

•

•

•
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e.g.  If mean is 70 and S.E. is 2.1, we can be 68% confi dent that population mean is between 70 ± 2.1. 
 - more informative than standard deviation, as it is usually the  population mean that interests us.

To raise confi dence limit to 95%, then use S.E. x 1.96*. 

 = 95% confi dence interval around true mean.

For above example, 95% confi dence interval around the mean 

 = 70 ± (1.96 x 2.1)

So 95% sure that true mean between 65.884 and 74.116.

This only valid with samples > 30 observations. 
With smaller samples, where we cannot be so confi dent about sample standard deviation, the z-score of 1.96 
is not used:

- instead a t-score is used, the size of which is dependant on sample size. Found in table, against ap-
propriate number of degrees of freedom (n-1).

* = the z-score when using a 95% confi dence level. Z – scores are also known as standard scores and are cal-
culated by subtracting the population mean from an individual raw score and dividing the difference by the 
population SD.

2.1.3  Graphing means

As well as plotting means on, best also to incorporate standard error bars, or (even better) bars signifying 95% 
confi dence limits around sample mean, within which true mean lies. If confi dence limits around sample means 
in the diff erent conditions do not overlap, we can be reasonably sure that means are genuinely diff erent – i.e. 
they are eff ectively from diff erent populations. If medians are used, 95% confi dence bars can also be drawn, but 
in this case S.E. is not used. 

2.2  INFERENTIAL STATISTICS

Statistically signifi cant outcome: when event occurs, whose probability is below certain threshold. The thresh-
old is usually p<0.05, but may be P<0.01, or lower (see above). Lower thresholds are usually required when it 
is more important not to make mistake; by arguing that an effect occurred when really the difference was due 
only to chance (e.g. when testing drugs against placebos).

Science progresses through testing of hypotheses. A hypothesis might be that calling frogs are predated more 
by bats than are non-callers. 

The experimental hypothesis (H1) - such an effect will occur, and the means of two samples, for example, 
will be different.

The Null hypothesis (H0) - conditions being looked at, or tested, will have no effect. (Null = ‘nothing’).

Outcome of an experiment - based around either accepting or rejecting null hypotheses; ideas can’t be proven 
- just rejected! Hence, science procedes conservatively. 

A currently held belief is essentially just that - an explanation that has proved to fi t best with the data, but maybe 
only until another better explanation comes along.

2.2.1  One-tailed and two-tailed tests

H0: μ1 = μ2
Usually H1 states only that μ1 ≠ μ2.
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If H0 rejected, conclude that sample with larger mean has been drawn from population with larger mean - i.e. 
the difference is ‘real’ and not just an effect of chance.  

Two-tailed test - where no a priori prediction has been made about which mean is the larger. Used in almost 
all cases.

One-tailed test - where H1 predicts that  μ1 > μ2. Less stringent than two-tailed, so statistically signifi cant 
difference more likely to be found.

It is tempting to switch to one-tailed test in analysis to obtain signifi cant result, where result would not be 
signifi cant with two-tailed test. This is cheating! 
 - decision to use one-tailed test must be made before analysis, and for sound reasons (not just a 
‘hunch’).  

e.g. where a one-tailed test might be  appropriate: testing of new pain killer against a placebo. Experiment 
should reveal whether it helps the symptom, or alternatively, has no effect at all. Because of prior knowledge 
of its benign nature, it is not feasible that the drug will make the problem worse, so a one-tailed test is fi ne.

Type 1 and type 2 errors

Type 1:  to falsely reject H0. Can be reduced by setting a lower threshold for signifi cance. At p = 
0.05, type one errors occur 5x out of 100.  

Type 2:  to falsely accept H0. Often occurs with small samples, where the data are too few to have 
much chance of discovering an underlying signifi cant effect.

2.2.2 Diff erences or trends

May be concerned with either:

differences between two or more groups

Here, groups could be sexes, age categories, experimental versus control conditions, happy versus sad people, 
etc.

Or:

trends between variables.

In this case, looking for relationship between two more-or-less continuously varying measures. For example, 
is there a relationship between height and weight, the amount of a drug and its effect, etc.? Such data can be 
graphed as a scatter plot and may be positive, negative or no correlation. A regression equation can be fi tted 
to the plot, and its statistical signifi cance measured. At its simplest, the data can be tested to see if they form a 
pattern signifi cantly different than a straight horizontal line (the H0 - i.e. altering independent variable has no 
effect on dependent variable). 

2.3 CHOOSING THE APPROPRIATE STATISTICAL TEST

One of the most crucial skills that must be learnt by a biologist. Researchers must know how to select appropri-
ate test from many available. Even the laborious calculations have now largely been cut out due to computer 
packages, so carrying out tests is very quick and errors in test selection are easily made.

•

•

•

•
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2.3.1 Parametric and non-parametric tests

Parametric - used for analysing data that obey certain assumptions. 
 - data sets should be normally distributed, with same variance.
 - data must also only consist of actual observations, not percentages, ratios, etc.

Such tests are used to compare means. For example: 
matched and unmatched T-tests
F-tests
analysis of variance (ANOVA)
Pearson correlation coeffi cient.

NB. These tests are not dealt with in the remainder of this guide but will be incorporated in a future 
TBA Skills Series booklet.

Non-parametric tests - no such assumptions.

Often most appropriate with biology fi eld data, where samples collected are too small for us to be confi dent 
about shape of their distribution*, or where there are often reasons that cause data to be actually skewed. Can 
be used to analyse percentages, ratios, ranked data. 

Tests compare medians. For example:
Wilcoxon matched-pairs test
Mann-Whitney U-test
Kruskal-Wallis
Spearman Rank correlation.  

The remainder of this guide deals with these tests and others (binomial test & chi-squared) that you are most 
likely to use during your TBA project. Parametric tests and GLM (general linear models) are dealt with in 
separate guides.

* See the TBA ‘Simple guide to Minitab’ to fi nd tests for normal distribution and variance. 

2.3.2 Th e binomial test

Used where data fall into one of two categories, and want to ask if the distributon is random. Such as, given a 
choice, do sunbirds at Amani prefer to approach red or purple fl owers?

If only three birds used in test, and red is chosen by each, we can ask what the probability is of getting this 
outcome, i.e. of ‘r r r’. We need to work out what all possible outcomes are:

r r r  r r p   r p r  r p p 
p p p   p p r  p r p   p r r

So the probability of (r r r) is 1/8 = 0.125 and therefore H0 cannot be rejected.

If 20 trials were carried out (each with a different bird - each trial must be completely independent), and red 
selected 15 times, we should again list all the possible ways in which we could obtain an outcome as, or more, 
extreme than this, and hence again come up with a probability that the result was down to just chance.

However, such a process is laborious. Binomial theory provides a formula that can be used instead:

p =       k!        x  px  x q(k-x)
         x!(k-x)!

where 

•
•
•
•

•
•
•
•
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p = probability of a particular combination
k = number of trials/events
x = stated number of a particular outcome (e.g. red)
p = probability of a particular outcome (e.g. red)
q = probability of the other outcome (e.g. purple)

So for the 20 trials above, 

p =         20!          x  0.515  x 0.5(20 - 15)   =  0.015
       15!(20 - 15)!

So, the probability of obtaining this outcome is 15/1000 = 0.015 and H0 can be rejected.

2.3.3 Chi-squared test (χ2)
 
Th is can be used with the same sort of data as a binomial test, but the latter is better (more powerful), when 
there are only two categories for observations.

With χ2, expected values have to be created, assuming H0. For example, if 16 male sunbirds were observed 
feeding on red fl owers in a sample of 24, we can ask if this could be expected to occur just by chance:

   Males   Females
Observed:       16        8
Expected:     12       12

To calculate deviation from expected pattern, subtract the two expected values from the observed values, and 
then these differences could be added together:

(16-12) + (8-12) = 0.  

But this will always equal 0, so gets us nowhere. Therefore, to overcome the counterbalancing effects of posi-
tive and negative signs, ‘squares’ of the differences are added together:

(16-12)2 + (8-12)2 = 32.

The problem now is that this doesn’t take into account sample size: a difference of 4 from the expected value, 
when that value is a low number like 12, is far more signifi cant than difference of 4 when the expected is 1200. 
So the formula must take sample size into account and does so by dividing each square of the difference by 
the  expected value, before adding together.  This gives us the chi-squared formula:

χ 2 = ·(observed - expected)2

      expected

χ 2 table to fi nd out associated probability:

p: 0.50  0.20  0.10  0.05  0.01
χ 2: 0.86  1.64  2.71  3.84  6.64

For the example: 
χ 2 = 2.67, so probability of obtaining outcome by chance is between 0.10 and 0.20.
i.e.  H0 not rejected.

This application of χ 2 can be used for multiple categories - e.g if there are 4 categories, then expected number 
of outcomes in each is 0.25 multiplied by the sample size.
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If the χ 2 test is used when there are just 2 categories, then stricly Yate’s correction should be applied: 
involves subtracting 0.5 from the numerator in equation, before squaring. The subtraction is made 
from the absolute value of the difference between O and E (i.e. the sign is ignored, if negative).

So:

χ 2 = ·(|O - E| - 0.5)2    where just two categories.
      E

2.3.4 Chi-squared contingency tables

In the above example, observed frequencies were distributed across one row of categories. However, sometimes 
observations within each sampling unit can fall into one of several categories as well and this will produce a 
two-way contingency table.

For example, a researcher wants to know if there is a signifi cant difference between the number of fi ghts a male 
fi ddler crab wins when within its territory and when off its territory.

  wins losses totals
On territory  10 10 20
Off territory  10 30 40
  ----------------------------------------------------------
 totals  20  40 60

To calculate expected frequencies needed for χ 2 test:

- look on lower totals row, taking the sample of fi ghts as a whole (i.e. with the assumption that it makes no 
difference whether on or off territory).

- you can see that 1/3 of all fi ghts are won, and 2/3 are lost. The expectation, if H0 correct, is that the 1/3 : 2/3 
ratio will apply to both on and off territory.

So expected values are:

  wins losses totals
on  20x1/3 20x2/3 20
off   40x1/3 40x2/3 40
  ----------------------------------------------------------
  totals  20  40 60

In the general table below, the expected values are:

a (a+b)(a+c)/(a+b+c+d)
b (a+b)(b+d)/(a+b+c+d)
c (a+c)(c+d)/(a+b+c+d)
d (b+d)(c+d)/(a+b+c+d)

      total
    a      b   a+b
    c      d   c+d
 -------------------------------------------------------------
 a+c   b+d         a+b+c+d
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In a further example, after day in the fi eld, students were scored as having either wet or dry clothes, and a link 
was sought between this and the class they belonged to:

WET DRY TOTALS
Ecologists     5         6.25       25      17.5 30
Primatologists   15        9.58       31     26.8 46
Totals 20 56 96

Expected results in italics.

χ 2 = (5-6.25) 2  +  (25-17.5) 2  +  (15 - 9.58)2  +  (31 - 26.8) 2 
           6.25    17.5              9.58        26.8 

   = 7.19

Gives signifi cant result at  p < 0.01. 

However, we must be careful in drawing a conclusion that primatologists get wetter than ecologists! Were the 
data independent? They are not if all primatologists were out together in a group, so were acting as a unit, not 
as separate individuals. If this was the case then the analysis would be invalid.

In all examples above, the degrees of freedom is 1.  This is calculated as (number of rows - 1) x (number of 
columns - 1).

Degrees of freedom

= number of observations in a particular test which can take on any value. One degree of freedom lost for 
every fi xed value (e.g. if we have the mean for a set of data, then knowledge of all values but one will dictate 
the missing value). 

2.3.5 Mann-Whitney U test

Tests for difference between medians of 2 samples, where no logical connections between any point in one 
column and a specifi c point in the other. As with most non-parametric tests, Mann-Whitney assesses the ranks 
of the observations within each sample.

Example:
In a study looking at territory size of little greenbuls inhabiting both the small and large forest patches in and 
around Kibale, the following data were collected:

Small forest Rank Large forest Rank
5 1 9 5.5
7 4 15 10.5

12 8.5 18 12
15 10.5 25 13
6 2.5 6 2.5
9 5.5 12 8.5

10 7

Total 39 52
 
If no difference between the samples, then each column would show equal spread of low and high ranks.  
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The test statistic U is calculated with the formula:

U1 = n1n2 + n2(n2 +1) -R2
            2
where   n1 = number of observations in fi rst column
 n2 = number of observations in second column
 R2= sum of the ranks in the second column

Then calculate U2 = n1n2-U2 

Whichever is lower, U1 or U2, then looked up in table to determine whether a signifi cant result at sample size 
of n1 and n2.  

In the example above, U1 = (7x6) + 6(6+1) - 52   =  11
       2

and    U2 = (7x6) - 11   =  31

Looking up 11 in the table, with samples of 6 and 7: probability of obtaining this result by chance is > 0.05. 
Critical value is 6, hence H0 cannot be rejected.

Note: In Minitab the test statistic is given as ‘W’.

2.3.6 Kruskal-Wallis test

Medians of several samples can be compared using several Mann-Whitney U tests, but such multiple compari-
sons run the risk of making type 1 errors. A signifi cant result is accepted at probability of p = 0.05, so there is 
always a 1 in 20 chance of getting the conclusion wrong; as more tests that are done on the data, it becomes 
more likely that such a mistake will be made.

K-W test overcomes this problem by analysing in one step whether differences occur between the medians of 
several samples (the parametric ANOVA test does same, but considers means of several samples).

In K-W, there must be 5+ observations in each sample, but samples do not have to be of equal size.

ALL data are ranked together, irrespective of which column they are in.  Ranks for each column then added 
and squared, and each value of R2 is then divided by respective value of n.

The data are then entered into the following formula:

K is then looked up in a χ2 table, under (# of samples – 1) degrees of freedom.

Note that if the overall result is signifi cant, you can only be really confi dent that the samples with the smallest 
and largest rank sums are signifi cantly different from one another. To be certain where the differences lie, you 
would need to carry out a post hoc test (see standard statistics texts for details).
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2.3.7 Wilcoxon Matched-Pairs test

Used when observations in one sample (data column) have a natural ‘partner’ in the other i.e. the medians of 
two matched samples are being compared. It may be that the matching stems from individuals being each tested 
in two different experimental conditions.

During the test each value in one column is subtracted from corresponding value in other. If H0 correct, then 
number and magnitude of positive differences between pairs ≈ equal negative differences.

First the subtractions are done; clearly the pairs of data should occur on the same row. Then differences are ranked 
according to absolute values (i.e. ignoring signs). Next, the sum of ranks of -ve & +ve differences added up.

The smaller of the two rank sums is the test statistic, T.

The value of T is compared to the critical value for the appropriate sample size in the Wilcoxon table. If equal 
to, or lower than, the tabulated value, then the result is signifi cant, and H0 can be rejected.

Th e sample size for the test is the number of pairs for which diff erence between them ≠ 0. A sample of 6+ is 
necessary; if >30, use paired T-test (where your data are normally distributed).

Example:
A study carried out to see if male birds in territories provided with extra food allocate more of their time to 
singing.

Male
Songs per hour

Diff. Rank +ve ranks -ve ranksProvisioned Not provisioned

1 18 13 +5 5 5
2 16 14 +2 3 3
3 19 12 +7 7 7
4 10 12 -2 3 3
5 11 10 +1 1 1
6 20 12 +8 8 8
7 12 12 0 -
8 32 26 +6 6 6
9 15 13 +2 3 3

Total 33 3

Critical value (T) in Wilcoxon table for sample size of 8 is 3, at p = 0.05.  

This is same as that of the smallest rank sum, so H0 is rejected - there was more singing when birds had extra 
food supplied in their territories.
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2.4 SELECTING THE APPROPRIATE TEST NONPARAMETRIC DATA

Are you testing for a trend (correlation)
or for diff erences between conditions?

    

Trend

     Are the data nominal, ordinal or interval?

 

Are the data in each condition
matched or unmatched?

 Diff erence

Spearman Rank 
Correlation Test

Ordinal or interval Nominal

Binomial test (if 2 categories)

Chi-square test (if 3 categories)

Matched Unmatched
2 samples

Unmatched
3+ samples

Wilcoxon
matched-pairs test

Mann-Whitney
U test

Kruskal-Wallis
test
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95% confi dence limits around median values

Sample size r (for P = approx. 95%)
2 -
3 -
4 -
5 -
6 1
7 1
8 1
9 2
10 2
11 2
12 3
13 3
14 3
15 4
16 4
17 5
18 5
19 5
20 6
21 6
22 6
23 7
24 7
25 8
26 8
27 8
28 9

r = number of values in from the the extremes of the data set.  The values at these points, 
above and below the median, represent the 95% confi dence limits of the median. 
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Skills Series
Th is statistics guide was developed to complement the teaching on the 

Tropical Biology Assocation’s fi eld courses.  Th ese ecology and conservation 

fi eld courses are based in East Africa and Madagascar.  Th ey are a tool to 

build capacity in tropical conservation.  Lasting one month, the courses 

provide training in current concepts and techniques in tropical ecology 

and conservation as well skills needed for designing and carrying out fi eld 

projects.  Over 120 conservation biologists from both Africa and Europe are 

trained each year. 
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follow-up support. 
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